(Residential Autonomous College affiliated to University of Calcutta) B.A./B.Sc. FIRST SEMESTER EXAMINATION, DECEMBER 2018 FIRST YEAR [BATCH 2018-21] CHEMISTRY (General) Date : 19/12/2018 Paper: I Time : 11 am – 1 pm (Use a separate Answer book for each group) Group – A UNIT-I Answer **any one** of the following: a) State the assumption of Bohr model of hydrogen atom. b) Calculate the wavelength of spectral lines when an electron drops from the third to the second Bohr orbit in a H atom. (Rydberg constant = 109700 cm^{-1})

- Give the mathematical expression of the 'Radioactive Decay law' and hence give the physical c) significance of decay constants.
- d) Radio nuclide with n:p ratio above the stability ratio range decay by β emission and not by neutron emission — Explain.
- Frist ionization potential of C atom is greater than that of B atom, whereas the reverse is true e) for the second ionization potential— Explain. [2]
- a) Draw the nuclear binding energy curve and point out the information obtained from it 2. regarding the stability of atomic nuclei. [1+3]
 - What is the difference between electronegativity and electron affinity of an element? b)
 - c) State Hund's rule of maximum multiplicity.
 - d) State the significance of principal, azimuthal and magnetic quantum number.
 - e) Which of the following arrangement would be more stable and why?

\uparrow	\uparrow	\uparrow		\uparrow	\uparrow	\downarrow	$\uparrow\downarrow$	\uparrow	
p _x	p_y	p_z	-	p_{x}	p_{y}	p_z	p _x	py	$\mathbf{p}_{\mathbf{z}}$

UNIT-II

Answer **any one** of the following:

1.

- 3. a) Define order and molecularity of a reaction. Derive an expression for the rate constant of a zero order reaction. What is the unit of the rate constant? Derive the half life period of the reaction.
 - The equivalent conductance of CH₃COONa, HCl and NaCl at 25°C and at infinite dilution are b) 78, 384 and 109 ohm⁻¹ cm² g equiv⁻¹ respectively. Calculate the equivalent conductance of acetic acid at infinite dilution at same temperature. [3]
 - For a chemical reaction the rate constants at temperatures 298 K and 338K are 3.46×10^{-5} c) min^{-1} and $4.87 \times 10^{-3} min^{-1}$ respectively. Calculate the energy of activation.
- Deduce Michales Menten equation for an enzyme catalysed reaction. [5] 4. a)

RAMAKRISHNA MISSION VIDYAMANDIRA

Full Marks : 50

 $[1 \times 13]$

[2]

[3]

[3]

[3]

[2]

[2]

[3]

[2]

 $[1 \times 12]$

[2+2+1+1]

[3]

	b)	The resistance of a conductivity cell filled with 0.02 (N) KCl is 17.6 ohm. The specific conductance of the solution is 0.0024 ohm ⁻¹ cm ⁻¹ . Determine the cell constant of the conductivity cell.	[2]
	c)	State Kohlrasuch's law of independent migration of ion.	[1]
	d)	A first order reaction completes 50% in 1 hour. Calculate the time for 90 % completion of the same reaction	[2]
	e)	State and explain Ostwald dilution law.	[2]
		<u>Group – B</u> Linit III	
An	swer	any one of the following:	[1 × 12]
5.	a)	State the basic postulates the kinetic theory of gas is based upon.	[2]
	b)	At what temperature would ethane molecules have the same r.m.s. velocity as methane molecules at 27° C.	[2]
	c)	Write down the units of the van der Waals constant a and b.	[2]
	d)	State the principle of equipartition of energy.	[1]
	e)	Applying equipartition law of energy, predict the C_v of CO_2 and CH_4 .	[3]
	f)	Write down the expression for Maxwell's distribution law of molecular speeds. Explain the terms.	[2]
6.	a)	Define surface tension. What are the CGS and SI units of surface tension. State whether surface tension of a liquid is an extensive or intensive property.	[1+2+2]
	b)	Establish the relation $\frac{\text{RTc}}{\text{P}_{c}\text{V}_{c}} = \frac{8}{3}$ for van der Waals gas. Symbols have their usual meaning.	[3]
	c)	Define critical temperature. Sketch the P-V diagram for a real gas below and above the critical temperature.	[2]
	d)	How does the viscosity coefficient of a gas depend on temperature? UNIT-IV	[2]
An	swer	any one of the following:	[1 × 13]
7.	a)	Classify the following quantities as extensive or intensive properties	
		mass, density, heat capacity, enthalpy.	[2]
	b)	i) Write down the mathematical definition of the first law of thermodynamics.	50.01
	-)	1) From the above expression show that the energy of the universe is a constant.	[2+2]
	c) d)	Find $Q, \Delta U$, W , ΔH for adiabatic expression of an ideal gas into vacuum.	[3]
	u)	C(graphite)+H ₂ O(g) \rightarrow CO(g)+H ₂ (g)	
		ΔH°_{298} =131.28 kJ/mole. The values of \overline{C}_{n} / (J / K mol) are : graphite, 8.53; H ₂ O, 33.58; CO(g)	
		29.12 and H ₂ (g), 28.82. Calculate the value of ΔH° at 125°C.	[4]
8.	a)	Derive Kirchhoff's equation when C _p values are independent of temperatue.	[3]
	b)	Establish a relation between C_p and C_V where the symbols have their usual meanings.	[3]
	c)	Calculate the maximum work in ergs when 2.0 moles of an ideal gas expand isothermally at 27° C from 1 lt to 5 lt.	[3]
	d)	Show that Joule Thomson expansion is an isenthalpic process.	[2]
	e)	Obtain the concept of temperature from zeroth law of thermodynamics.	[2]